Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
BMC Ecol Evol ; 24(1): 15, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287267

RESUMEN

BACKGROUND: Superposition, i.e. the ability of a particle (electron, photon) to occur in different states or positions simultaneously, is a hallmark in the subatomic world of quantum mechanics. Although counterintuitive at first sight, the quantum world has potential to inform macro-systems of people and nature. Using time series and spatial analysis of bird, phytoplankton and benthic invertebrate communities, this paper shows that superposition can occur analogously in redundancy analysis (RDA) frequently used by ecologists. RESULTS: We show that within individual ecosystems single species can be associated simultaneously with different orthogonal axes in RDA models, which suggests that they operate in more than one niche spaces. We discuss this counterintuitive result in relation to the statistical and mathematical features of RDA and the recognized limitations with current traditional species concepts based on vegetative morphology. CONCLUSION: We suggest that such "quantum weirdness" in the models is reconcilable with classical ecosystems logic when the focus of research shifts from morphological species to cryptic species that consist of genetically and ecologically differentiated subpopulations. We support our argument with theoretical discussions of eco-evolutionary interpretations that should become testable once suitable data are available.


Asunto(s)
Evolución Biológica , Ecosistema , Humanos , Animales , Fitoplancton , Aves , Fotones
2.
Adv Ecol Res ; 69: 69-81, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38152344

RESUMEN

Panarchy is a heuristic of complex system change rooted in resilience science. The concept has been rapidly assimilated across scientific disciplines due to its potential to envision and address sustainability challenges, such as climate change and regime shifts, that pose significant challenges for humans in the Anthropocene. However, panarchy has been studied almost exclusively via qualitative research. Quantitative approaches are scarce and preliminary but have revealed novel insights that allow for a more nuanced understanding of the heuristic and resilience science more generally. In this roadmap we discuss the potential for future quantitative approaches to panarchy. Transdisciplinary development of quantitative approaches, combined with advances in data accrual, curation and machine learning, may build on current tools. Combined with qualitative research and traditional approaches used in ecology, quantification of panarchy may allow for broad inference of change in complex systems of people and nature and provide critical information for management of social-ecological systems.

3.
Discov Ment Health ; 3(1): 24, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971612

RESUMEN

BACKGROUND: This paper discusses a paradox in mental health. It manifests as a relationship between adverse "bad" effects (suffering, clinical costs, loss of productivity) in individuals and populations and advantageous "good" aspects of mental disorders. These beneficial aspects (scientific, artistic and political accomplishments) emanate at the societal level through the frequently unprecedented creativity of people suffering from mental disorders and their relatives. Such gains can contribute to societal innovation and problem-solving. Especially in times of accelerated social-ecological change, approaches are needed that facilitate best-possible mental health care but also recognize creative ideas conducive to beneficial clinical and social-ecological innovations as soon as possible. DISCUSSION: This paper emphasizes the need to account for creativity as a crucial component in evolving mental health systems and societies. It highlights the need for wide-ranging approaches and discusses how research targeting multiple facets (e.g., brain level, cognitive neuroscience, psychiatry, neurology, socio-cultural, economic and other factors) might further our understanding of the creativity-mental disorder link and its importance for innovating mental health systems and societies. CONCLUSION: Our discussion clarifies that considerable research will be needed to obtain a better understanding of how creativity associated with mental disorders may help to create more sustainable societies on a fast-changing planet through innovative ideas. Given the current-state-of-the-art of research and healthcare management, our discussion is currently speculative. However, it provides a basis for how pros and cons might be studied in the future through transdisciplinary research and collaborations across sectors of society.

4.
Glob Sustain ; 6(e8): 1-14, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37692862

RESUMEN

Non-technical summary: The United Nations' sustainable development goals (SDGs) articulate societal aspirations for people and our planet. Many scientists have criticised the SDGs and some have suggested that a better understanding of the complex interactions between society and the environment should underpin the next global development agenda. We further this discussion through the theory of social-ecological resilience, which emphasises the ability of systems to absorb, adapt, and transform in the face of change. We determine the strengths of the current SDGs, which should form a basis for the next agenda, and identify key gaps that should be filled. Technical summary: The United Nations' sustainable development goals (SDGs) are past their halfway point and the next global development agenda will soon need to be developed. While laudable, the SDGs have received strong criticism from many, and scholars have proposed that adopting complex adaptive or social-ecological system approaches would increase the effectiveness of the agenda. Here we dive deeper into these discussions to explore how the theory of social-ecological resilience could serve as a strong foundation for the next global sustainable development agenda. We identify the strengths and weaknesses of the current SDGs by determining which of the 169 targets address each of 43 factors affecting social-ecological resilience that we have compiled from the literature. The SDGs with the strongest connections to social-ecological resilience are the environment-focus goals (SDGs 2, 6, 13, 14, 15), which are also the goals consistently under-prioritised in the implementation of the current agenda. In terms of the 43 factors affecting social-ecological resilience, the SDG strengths lie in their communication, inclusive decision making, financial support, regulatory incentives, economic diversity, and transparency in governance and law. On the contrary, ecological factors of resilience are seriously lacking in the SDGs, particularly with regards to scale, cross-scale interactions, and non-stationarity. Social media summary: The post-2030 agenda should build on strengths of SDGs 2, 6, 13, 14, 15, and fill gaps in scale, variability, and feedbacks.

5.
Bioessays ; 45(11): e2300113, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37694600

RESUMEN

Understanding biological systems in terms of scientific materialism has arguably reached a frontier, leaving fundamental questions about their complexity unanswered. In 1998, Friedrich Cramer proposed a general resonance theory as a way forward. His theory builds on the extension of the quantum physical duality of matter and wave to the macroscopic world. According to Cramer' theory, agents constituting biological systems oscillate, akin to musical soundwaves, at specific eigenfrequencies. Biological system dynamics can be described as "Symphonies of Life" emerging from the resonance (and dissonance) of eigenfrequencies within the interacting collective. His theory has potential for studying biological problems of increasing complexity in a fast-changing Anthropocene from a new and transdisciplinary angle. Despite data becoming increasingly available for analyses, Cramer's theory remains ignored and therefore untested a quarter century after its publication. This paper discusses how the theory can move to quantitative assessments and application. Cramer's general resonance theory deserves revival.

6.
Nature ; 620(7974): 582-588, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558875

RESUMEN

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Hídricos , Monitoreo del Ambiente , Agua Dulce , Invertebrados , Animales , Especies Introducidas/tendencias , Invertebrados/clasificación , Invertebrados/fisiología , Europa (Continente) , Actividades Humanas , Conservación de los Recursos Hídricos/estadística & datos numéricos , Conservación de los Recursos Hídricos/tendencias , Hidrobiología , Factores de Tiempo , Producción de Cultivos , Urbanización , Calentamiento Global , Contaminantes del Agua/análisis
7.
Sustain Sci ; : 1-16, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37363302

RESUMEN

Coping with surprise and uncertainty resulting from the emergence of undesired and unexpected novelty or the sudden reorganization of systems at multiple spatiotemporal scales requires both a scientific process that can incorporate diverse expertise and viewpoints, and a scientific framework that can account for the structure and dynamics of interacting social-ecological systems (SES) and the inherent uncertainty of what might emerge in the future. We argue that combining a convergence scientific process with a panarchy framework provides a pathway for improving our understanding of, and response to, emergence. Emergent phenomena are often unexpected (e.g., pandemics, regime shifts) and can be highly disruptive, so can pose a significant challenge to the development of sustainable and resilient SES. Convergence science is a new approach promoted by the U.S. National Science Foundation for tackling complex problems confronting humanity through the integration of multiple perspectives, expertise, methods, tools, and analytical approaches. Panarchy theory is a framework useful for studying emergence, because it characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It accounts for the fundamental tenets of complex systems and explicitly grapples with emergence, including the emergence of novelty, and the emergent property of social-ecological resilience. We provide an overview of panarchy, convergence science, and emergence. We discuss the significant data and methodological challenges of using panarchy in a convergence approach to address emergent phenomena, as well as state-of-the-art methods for overcoming them. We present two examples that would benefit from such an approach: climate change and its impacts on social-ecological systems, and the relationships between infectious disease and social-ecological systems.

8.
Sci Total Environ ; 889: 164169, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196937

RESUMEN

Resilience research is central to confront the sustainability challenges to ecosystems and human societies in a rapidly changing world. Given that social-ecological problems span the entire Earth system, there is a critical need for resilience models that account for the connectivity across intricately linked ecosystems (i.e., freshwater, marine, terrestrial, atmosphere). We present a resilience perspective of meta-ecosystems that are connected through the flow of biota, matter and energy within and across aquatic and terrestrial realms, and the atmosphere. We demonstrate ecological resilience sensu Holling using aquatic-terrestrial linkages and riparian ecosystems more generally. A discussion of applications in riparian ecology and meta-ecosystem research (e.g., resilience quantification, panarchy, meta-ecosystem boundary delineations, spatial regime migration, including early warning indications) concludes the paper. Understanding meta-ecosystem resilience may have potential to support decision making for natural resource management (scenario planning, risk and vulnerability assessments).


Asunto(s)
Ecosistema , Agua Dulce , Humanos , Biota , Atmósfera
9.
Sci Total Environ ; 867: 161537, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640879

RESUMEN

Europe has experienced a substantial increase in non-indigenous crayfish species (NICS) since the mid-20th century due to their extensive use in fisheries, aquaculture and, more recently, pet trade. Despite relatively long invasion histories of some NICS and negative impacts on biodiversity and ecosystem functioning, large spatio-temporal analyses of their occurrences are lacking. Here, we used a large freshwater macroinvertebrate database to evaluate what information on NICS can be obtained from widely applied biomonitoring approaches and how usable such data is for descriptions of trends in identified NICS species. We found 160 time-series containing NICS between 1983 and 2019, to infer temporal patterns and environmental drivers of species and region-specific trends. Using a combination of meta-regression and generalized linear models, we found no significant temporal trend for the abundance of any species (Procambarus clarkii, Pacifastacus leniusculus or Faxonius limosus) at the European scale, but identified species-specific predictors of abundances. While analysis of the spatial range expansion of NICS was positive (i.e. increasing spread) in England and negative (significant retreat) in northern Spain, no trend was detected in Hungary and the Dutch-German-Luxembourg region. The average invasion velocity varied among countries, ranging from 30 km/year in England to 90 km/year in Hungary. The average invasion velocity gradually decreased over time in the long term, with declines being fastest in the Dutch-German-Luxembourg region, and much slower in England. Considering that NICS pose a substantial threat to aquatic biodiversity across Europe, our study highlights the utility and importance of collecting high resolution (i.e. annual) biomonitoring data using a sampling protocol that is able to estimate crayfish abundance, enabling a more profound understanding of NICS impacts on biodiversity.


Asunto(s)
Astacoidea , Ecosistema , Animales , Especies Introducidas , Biodiversidad , Ríos
10.
J Environ Manage ; 327: 116875, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462478

RESUMEN

Panarchy, a model of dynamic systems change at multiple, interconnected spatiotemporal scales, allows assessing whether management influences ecological processes and resilience. We assessed whether liming, a management action to counteract anthropogenic acidification, influenced scale-specific temporal fluctuation frequencies of benthic invertebrates and phytoplankton assemblages in lakes. We also tested whether these fluctuations correlated with proxies of liming (Ca:Mg ratios) to quantify scale-specific management effects. Using an ecosystem experiment and monitoring data, time series analyses (1998-2019) revealed significant multiscale temporal (and thus panarchy) structure for littoral invertebrates across limed and reference lakes. Such patterns were inconsistent for sublittoral invertebrates and phytoplankton. When significant panarchy structure was found, Ca:Mg ratios correlated with only a few of the identified temporal fluctuation frequencies across limed and reference lakes. This suggests that liming effects become diluted in the managed lakes. The lack of manifestations of liming across the independent temporal fluctuation patterns suggest that this lake management form fails to create and enforce cross-scale interactions, a crucial component of ecological resilience. This interpretation supports liming as a mitigation effort rather than a tool to restore acidified lakes to a self-organizing system equivalent of circumneutral references.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Animales , Invertebrados , Óxidos , Lagos/química
11.
Bioscience ; 73(11): 800-807, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516522

RESUMEN

Adaptive management is a powerful approach to management of social-ecological systems in circumstances with high uncertainty and high controllability. Cross-scale interactions increase uncertainty while managing. When undertaking adaptive management, although largely overlooked, it is important to account for spatial and temporal scales to mediate within- and cross-scale effects of management actions. This is particularly true when managing for multiple social and ecological goals. The iterative nature of an adaptive approach has the capacity to accommodate tradeoffs among different stakeholder priorities and multiple ecosystem attributes within and across scales. In this paper, we introduce multi-scale adaptive management of social-ecological systems and demonstrate the importance of this approach with case studies of the Great Plains of North America and the Platte River Basin in the United States. Adaptive management combined with a focus on scale and cross-scale interactions using the panarchy model of social-ecological systems can help to improve management outcomes.

13.
Glob Chang Biol ; 28(15): 4620-4632, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35570183

RESUMEN

Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Europa (Continente) , Nueva Zelanda , Caracoles
14.
PLoS One ; 17(3): e0265571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35312714

RESUMEN

Studying ecosystem dynamics is critical to monitoring and managing linked systems of humans and nature. Due to the growth of tools and techniques for collecting data, information on the condition of these systems is more widely available. While there are a variety of approaches for mining and assessing data, there is a need for methods to detect latent characteristics in ecosystems linked to temporal and spatial patterns of change. Resilience-based approaches have been effective at not only identifying environmental change but also providing warning in advance of critical transitions in social-ecological systems (SES). In this study, we examine the usefulness of one such method, Fisher Information (FI) for spatiotemporal analysis. FI is used to assess patterns in data and has been established as an effective tool for capturing complex system dynamics to include regimes and regime shifts. We employed FI to assess the biophysical condition of eighty-five Swedish lakes from 1996-2018. Results showed that FI captured spatiotemporal changes in the Swedish lakes and identified distinct spatial patterns above and below the Limes Norrlandicus, a hard ecotone boundary which separates northern and southern ecoregions in Sweden. Further, it revealed that spatial variance changed approaching this boundary. Our results demonstrate the utility of this resilience-based approach for spatiotemporal and spatial regimes analyses linked to monitoring and managing critical watersheds and waterbodies impacted by accelerating environmental change.


Asunto(s)
Ecosistema , Lagos , Humanos , Análisis Espacial , Análisis Espacio-Temporal , Suecia
15.
Int J Health Policy Manag ; 11(9): 1949-1952, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35247939

RESUMEN

Adaptive capacity is a critical component of building resilience in healthcare (RiH). Adaptive capacity comprises the ability of a system to cope with and adapt to disturbances. However, "shocks," such as the current coronavirus disease 2019 (COVID-19) pandemic, can potentially exceed critical adaptation thresholds and lead to systemic collapse. To effectively manage healthcare systems during periods of crises, both adaptive and transformative changes are necessary. This commentary discusses adaptation and transformation as two complementary, integral components of resilience and applies them to healthcare. We treat resilience as an emergent property of complex systems that accounts for multiple, often disparately distinct regimes in which multiple processes (eg, adaptation, recovery) are subsumed and operate. We argue that Convergence Mental Health and other transdisciplinary paradigms such as Brain Capital and One Health can facilitate resilience planning and management in healthcare systems.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Nueva Gales del Sur , Ontario , Atención a la Salud , Australia , Gobierno
16.
Ecol Soc ; 26(4): 1-7, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34804170

RESUMEN

A key challenge of the Anthropocene is to confront the dynamic complexity of systems of people and nature to guide robust interventions and adaptations across spatiotemporal scales. Panarchy, a concept rooted in resilience theory, accounts for this complexity, having at its core multiscale organization, interconnectedness of scales, and dynamic system structure at each scale. Despite the increasing use of panarchy in sustainability research, quantitative tests of its premises are scarce, particularly as they pertain to management consequences in ecosystems. In this study we compared the physicochemical environment of managed (limed) and minimally disturbed reference lakes and used time series modeling and correlation analyses to test the premises of panarchy theory: (1) that both lake types show dynamic structure at multiple temporal scales, (2) that this structure differs between lake types due to liming interacting with the natural disturbance regime of lakes, and (3) that liming manifests across temporal scales due to cross-scale connectivity. Hypotheses 1 and 3 were verified whereas support for hypothesis 2 was ambiguous. The literature suggests that liming is a "command-and-control" management form that fails to foster self-organization manifested in lakes returning to pre-liming conditions once management is ceased. In this context, our results suggest that redundance of liming footprints across scales, a feature contributing to resilience, in the physicochemical environment alone may not be enough to create a self-organizing limed lake regime. Further research studying the broader biophysical lake environment, including ecological communities of pelagic and benthic habitats, will contribute to a better understanding of managed lake panarchies. Such insight may further our knowledge of ecosystem management in general and of limed lakes in particular.

17.
Ecology ; 102(4): e03283, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33428769

RESUMEN

Increasing human impact on the environment is causing drastic changes in disturbance regimes and how they prevail over time. Of increasing relevance is to further our understanding on biological responses to pulse disturbances (short duration) and how they interact with other ongoing press disturbances (constantly present). Because the temporal and spatial contexts of single experiments often limit our ability to generalize results across space and time, we conducted a modularized mesocosm experiment replicated in space (five lakes along a latitudinal gradient in Scandinavia) and time (two seasons, spring and summer) to generate general predictions on how the functioning and composition of multitrophic plankton communities (zoo-, phyto- and bacterioplankton) respond to pulse disturbances acting either in isolation or combined with press disturbances. As pulse disturbance, we used short-term changes in fish presence, and as press disturbance, we addressed the ongoing reduction in light availability caused by increased cloudiness and lake browning in many boreal and subarctic lakes. First, our results show that the top-down pulse disturbance had the strongest effects on both functioning and composition of the three trophic levels across sites and seasons, with signs for interactive impacts with the bottom-up press disturbance on phytoplankton communities. Second, community composition responses to disturbances were highly divergent between lakes and seasons: temporal accumulated community turnover of the same trophic level either increased (destabilization) or decreased (stabilization) in response to the disturbances compared to control conditions. Third, we found functional recovery from the pulse disturbances to be frequent at the end of most experiments. In a broader context, these results demonstrate that top-down, pulse disturbances, either alone or with additional constant stress upon primary producers caused by bottom-up disturbances, can induce profound but often functionally reversible changes across multiple trophic levels, which are strongly linked to spatial and temporal context dependencies. Furthermore, the identified dichotomy of disturbance effects on the turnover in community composition demonstrates the potential of disturbances to either stabilize or destabilize biodiversity patterns over time across a wide range of environmental conditions.


Asunto(s)
Cadena Alimentaria , Lagos , Animales , Biodiversidad , Ecosistema , Humanos , Fitoplancton , Estaciones del Año
18.
Ecol Soc ; 26(4): 1-9, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35116065

RESUMEN

Managing social-ecological systems toward desirable regimes requires learning about the system being managed while preparing for many possible futures. Adaptive management (AM) and scenario planning (SP) are two systems management approaches that separately use learning to reduce uncertainties and employ planning to manage irreducible uncertainties, respectively. However, each of these approaches have limitations that confound management of social-ecological systems. Here, we introduce iterative scenarios (IS), a systems management approach that is a hybrid of the scopes and relationships to uncertainty and controllability of AM and SP that combines the "iterativeness" of AM and futures planning of SP. Iterative scenarios is appropriate for situations with high uncertainty about whether a management action will lead to intended outcomes, the desired benefits are numerous and cross-scale, and it is difficult to account for the social implications around the natural resource management options. The value of iterative scenarios is demonstrated by applying the approach to green infrastructure futures for a neighborhood in the city of Cleveland, Ohio, U.S., that had experienced long-term, systemic disinvestment. The Cleveland green infrastructure project was particularly well suited to the IS approach given that learning about environmental factors was necessary and achievable, but what would be socially desirable and possible was unknown. However, iterative scenarios is appropriate for many social-ecological systems where uncertainty is high as IS accommodates real-world complexity faced by management.

19.
Biol Rev Camb Philos Soc ; 96(1): 89-106, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32869448

RESUMEN

The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as 'meta-systems', whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.


Asunto(s)
Ecosistema , Lagos , Biodiversidad
20.
Sci Total Environ ; 746: 141110, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32745855

RESUMEN

The use of discontinuity analysis to assess resilience and alternative regimes of ecosystems has mostly been based on animal size. We so far lack systematic comparisons of size-based and abundance-based approaches necessary for assessing the performance and suitability of the discontinuity analysis across a broader range of organism groups. We used an outdoor mesocosm setup to mimic shallow lake ecosystems with different depths (1.2 m deep, "shallow"; 2.2 m deep, "deep") and trophic status (i.e. low and high nutrient status characteristic of mesotrophic and hypertrophic lakes, respectively). We compared resilience assessments, based on four indicators (cross-scale structure, within-scale structure, aggregation length and gap size) inferred from the size and abundance (biovolume) structure of phytoplankton communities. Our results indicate that resilience assessments based on size and biovolume were largely comparable, which is likely related to similar variability in the size and abundance of phytoplankton as a function of nutrient concentrations. Also, nutrient enrichment rather than water depth influenced resilience, manifested in decreased cross-scale structure and increased aggregation lengths and gap sizes in the high-nutrient treatment. These resilience patterns coupled with decreased phytoplankton diversity and dominance of cyanobacteria in the high nutrient treatment support the use of discontinuity analysis for testing alternative regimes theory. Concordance of size-based and abundance-based results highlights the approach as being potentially robust to infer resilience in organism groups that lack discrete size structures.


Asunto(s)
Fitoplancton , Agua , Animales , Biomasa , Ecosistema , Eutrofización , Lagos , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...